This is almost the same as [Example 4.2, Neeman-Grothendieck].

Lemma 48.3.1. Let $f : X \to Y$ be a morphism between quasi-separated and quasi-compact schemes. The functor $Rf_* : D_\mathit{QCoh}(\mathcal{O}_ X) \to D_\mathit{QCoh}(\mathcal{O}_ Y)$ has a right adjoint.

Proof. We will prove a right adjoint exists by verifying the hypotheses of Derived Categories, Proposition 13.38.2. First off, the category $D_\mathit{QCoh}(\mathcal{O}_ X)$ has direct sums, see Derived Categories of Schemes, Lemma 36.3.1. The category $D_\mathit{QCoh}(\mathcal{O}_ X)$ is compactly generated by Derived Categories of Schemes, Theorem 36.15.3. Since $X$ and $Y$ are quasi-compact and quasi-separated, so is $f$, see Schemes, Lemmas 26.21.13 and 26.21.14. Hence the functor $Rf_*$ commutes with direct sums, see Derived Categories of Schemes, Lemma 36.4.5. This finishes the proof. $\square$

Comment #8313 by Nicolás on

In the statement of the lemma, I think we should write $Rf_\ast\colon D_\mathit{QCoh}(\mathcal{O}_X) \to D_\mathit{QCoh}(\mathcal{O}_Y)$ to be consistent with the rest of the section (and with the conventions in 36.2).

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).