Example 48.3.2. Let $A \to B$ be a ring map. Let $Y = \mathop{\mathrm{Spec}}(A)$ and $X = \mathop{\mathrm{Spec}}(B)$ and $f : X \to Y$ the morphism corresponding to $A \to B$. Then $Rf_* : D_\mathit{QCoh}(\mathcal{O}_ X) \to D_\mathit{QCoh}(\mathcal{O}_ Y)$ corresponds to restriction $D(B) \to D(A)$ via the equivalences $D(B) \to D_\mathit{QCoh}(\mathcal{O}_ X)$ and $D(A) \to D_\mathit{QCoh}(\mathcal{O}_ Y)$. Hence the right adjoint corresponds to the functor $K \longmapsto R\mathop{\mathrm{Hom}}\nolimits (B, K)$ of Dualizing Complexes, Section 47.13.

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)