Example 48.3.2. Let A \to B be a ring map. Let Y = \mathop{\mathrm{Spec}}(A) and X = \mathop{\mathrm{Spec}}(B) and f : X \to Y the morphism corresponding to A \to B. Then Rf_* : D_\mathit{QCoh}(\mathcal{O}_ X) \to D_\mathit{QCoh}(\mathcal{O}_ Y) corresponds to restriction D(B) \to D(A) via the equivalences D(B) \to D_\mathit{QCoh}(\mathcal{O}_ X) and D(A) \to D_\mathit{QCoh}(\mathcal{O}_ Y). Hence the right adjoint corresponds to the functor K \longmapsto R\mathop{\mathrm{Hom}}\nolimits (B, K) of Dualizing Complexes, Section 47.13.
Comments (0)