Lemma 48.17.10. In Situation 48.16.1 let f : X \to Y be a morphism of \textit{FTS}_ S. If f is flat, then f^!\mathcal{O}_ Y is a Y-perfect object of D(\mathcal{O}_ X) and \mathcal{O}_ X \to R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(f^!\mathcal{O}_ Y, f^!\mathcal{O}_ Y) is an isomorphism.
Proof. Both assertions are local on X. Thus we may assume X and Y are affine. Then Remark 48.17.5 turns the lemma into an algebra lemma, namely Dualizing Complexes, Lemma 47.25.2. (Use Derived Categories of Schemes, Lemma 36.35.3 to match the languages.) \square
Comments (0)