Lemma 48.21.5. In Situation 48.16.1 let f : X \to Y be a morphism of \textit{FTS}_ S. Let x \in X with image y \in Y. Assume
\mathcal{O}_{Y, y} is Cohen-Macaulay, and
\text{trdeg}_{\kappa (f(\xi ))}(\kappa (\xi )) \leq r for any generic point \xi of an irreducible component of X containing x.
Then
and the stalk H^{-r}(f^!\mathcal{O}_ Y)_ x is (S_2) as an \mathcal{O}_{X, x}-module.
Comments (0)