Lemma 48.21.5. In Situation 48.16.1 let $f : X \to Y$ be a morphism of $\textit{FTS}_ S$. Let $x \in X$ with image $y \in Y$. Assume

$\mathcal{O}_{Y, y}$ is Cohen-Macaulay, and

$\text{trdeg}_{\kappa (f(\xi ))}(\kappa (\xi )) \leq r$ for any generic point $\xi $ of an irreducible component of $X$ containing $x$.

Then

and the stalk $H^{-r}(f^!\mathcal{O}_ Y)_ x$ is $(S_2)$ as an $\mathcal{O}_{X, x}$-module.

## Comments (0)