The Stacks project

Proposition 48.32.2. In Situation 48.16.1 let $f : X \to Y$ be a morphism of $\textit{FTS}_ S$. Then the functors $Rf_!$ and $f^!$ are adjoint in the following sense: for all $K \in D^ b_{\textit{Coh}}(\mathcal{O}_ X)$ and $L \in D^+_{\textit{Coh}}(\mathcal{O}_ Y)$ we have

\[ \mathop{\mathrm{Hom}}\nolimits _ X(K, f^!L) = \mathop{\mathrm{Hom}}\nolimits _{\text{Pro-}D^+_{\textit{Coh}}(\mathcal{O}_ Y)}(Rf_!K, L) \]

bifunctorially in $K$ and $L$.

Proof. Choose a compactification $j : X \to \overline{X}$ over $Y$ and denote $\overline{f} : \overline{X} \to Y$ the structure morphism. Then we have

\begin{align*} \mathop{\mathrm{Hom}}\nolimits _ X(K, f^!L) & = \mathop{\mathrm{Hom}}\nolimits _ X(K, j^*\overline{f}{}^!L) \\ & = \mathop{\mathrm{Hom}}\nolimits _{\text{Pro-}D^+_{\textit{Coh}}(\mathcal{O}_{\overline{X}})} (Rj_!K, \overline{f}{}^!L) \\ & = \mathop{\mathrm{Hom}}\nolimits _{\text{Pro-}D^+_{\textit{Coh}}(\mathcal{O}_ Y)}(Rf_*Rj_!K, L) \\ & = \mathop{\mathrm{Hom}}\nolimits _{\text{Pro-}D^+_{\textit{Coh}}(\mathcal{O}_ Y)}(Rf_!K, L) \end{align*}

The first equality follows immediately from the construction of $f^!$ in Section 48.16. By Lemma 48.17.6 we have $\overline{f}{}^!L$ in $D^+_{\textit{Coh}}(\mathcal{O}_{\overline{X}})$ hence the second equality follows from Lemma 48.30.2. Since $\overline{f}$ is proper the functor $\overline{f}{}^!$ is the right adjoint of pushforward by construction. This is why we have the third equality. The fourth equality holds because $Rf_! = Rf_* Rj_!$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0G51. Beware of the difference between the letter 'O' and the digit '0'.