Lemma 48.2.5. Let $K$ be a dualizing complex on a locally Noetherian scheme $X$. Then $K$ is an object of $D_{\textit{Coh}}(\mathcal{O}_ X)$ and $D = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(-, K)$ induces an anti-equivalence

\[ D : D_{\textit{Coh}}(\mathcal{O}_ X) \longrightarrow D_{\textit{Coh}}(\mathcal{O}_ X) \]

which comes equipped with a canonical isomorphism $\text{id} \to D \circ D$. If $X$ is quasi-compact, then $D$ exchanges $D^+_{\textit{Coh}}(\mathcal{O}_ X)$ and $D^-_{\textit{Coh}}(\mathcal{O}_ X)$ and induces an equivalence $D^ b_{\textit{Coh}}(\mathcal{O}_ X) \to D^ b_{\textit{Coh}}(\mathcal{O}_ X)$.

**Proof.**
Let $U \subset X$ be an affine open. Say $U = \mathop{\mathrm{Spec}}(A)$ and let $\omega _ A^\bullet $ be a dualizing complex for $A$ corresponding to $K|_ U$ as in Lemma 48.2.1. By Lemma 48.2.3 the diagram

\[ \xymatrix{ D_{\textit{Coh}}(A) \ar[r] \ar[d]_{R\mathop{\mathrm{Hom}}\nolimits _ A(-, \omega _ A^\bullet )} & D_{\textit{Coh}}(\mathcal{O}_ U) \ar[d]^{R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(-, K|_ U)} \\ D_{\textit{Coh}}(A) \ar[r] & D(\mathcal{O}_ U) } \]

commutes. We conclude that $D$ sends $D_{\textit{Coh}}(\mathcal{O}_ X)$ into $D_{\textit{Coh}}(\mathcal{O}_ X)$. Moreover, the canonical map

\[ L \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(K, K) \otimes _{\mathcal{O}_ X}^\mathbf {L} L \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(L, K), K) \]

(using Cohomology, Lemma 20.39.9 for the second arrow) is an isomorphism for all $L$ because this is true on affines by Dualizing Complexes, Lemma 47.15.3^{1} and we have already seen on affines that we recover what happens in algebra. The statement on boundedness properties of the functor $D$ in the quasi-compact case also follows from the corresponding statements of Dualizing Complexes, Lemma 47.15.3.
$\square$

## Comments (0)