Lemma 48.2.6. Let $X$ be a locally Noetherian scheme. If $K$ and $K'$ are dualizing complexes on $X$, then $K'$ is isomorphic to $K \otimes _{\mathcal{O}_ X}^\mathbf {L} L$ for some invertible object $L$ of $D(\mathcal{O}_ X)$.

**Proof.**
Set

This is an invertible object of $D(\mathcal{O}_ X)$, because affine locally this is true, see Dualizing Complexes, Lemma 47.15.5 and its proof. The evaluation map $L \otimes _{\mathcal{O}_ X}^\mathbf {L} K \to K'$ is an isomorphism for the same reason. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: