Proof.
Set \omega _{X/S}^\bullet = a(\mathcal{O}_ S) as in Remark 48.12.5. Let c be the right adjoint of Lemma 48.3.1 for \Delta : X \to X \times _ S X. Because \Delta is the diagonal of a smooth morphism it is a Koszul-regular immersion, see Divisors, Lemma 31.22.11. In particular, \Delta is a perfect proper morphism (More on Morphisms, Lemma 37.61.7) and we obtain
\begin{align*} \mathcal{O}_ X & = c(L\text{pr}_1^*\omega _{X/S}^\bullet ) \\ & = L\Delta ^*(L\text{pr}_1^*\omega _{X/S}^\bullet ) \otimes _{\mathcal{O}_ X}^\mathbf {L} c(\mathcal{O}_{X \times _ S X}) \\ & = \omega _{X/S}^\bullet \otimes _{\mathcal{O}_ X}^\mathbf {L} c(\mathcal{O}_{X \times _ S X}) \\ & = \omega _{X/S}^\bullet \otimes _{\mathcal{O}_ X}^\mathbf {L} \wedge ^ d(\mathcal{N}_\Delta )[-d] \end{align*}
The first equality is (48.12.8.1) because \omega _{X/S}^\bullet = a(\mathcal{O}_ S). The second equality by Lemma 48.13.3. The third equality because \text{pr}_1 \circ \Delta = \text{id}_ X. The fourth equality by Lemma 48.15.6. Observe that \wedge ^ d(\mathcal{N}_\Delta ) is an invertible \mathcal{O}_ X-module. Hence \wedge ^ d(\mathcal{N}_\Delta )[-d] is an invertible object of D(\mathcal{O}_ X) and we conclude that a(\mathcal{O}_ S) = \omega _{X/S}^\bullet = \wedge ^ d(\mathcal{C}_\Delta )[d]. Since the conormal sheaf \mathcal{C}_\Delta of \Delta is \Omega _{X/S} by Morphisms, Lemma 29.32.7 the proof is complete.
\square
Comments (4)
Comment #5903 by Qingyuan Jiang on
Comment #5907 by Johan on
Comment #5908 by Qingyuan Jiang on
Comment #6104 by Johan on