Lemma 48.11.4. Let f : Y \to X be a finite pseudo-coherent morphism of schemes (a finite morphism of Noetherian schemes is pseudo-coherent). The functor R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (f_*\mathcal{O}_ Y, -) maps D_\mathit{QCoh}^+(\mathcal{O}_ X) into D_\mathit{QCoh}^+(f_*\mathcal{O}_ Y). If X is quasi-compact and quasi-separated, then the diagram
\xymatrix{ D_\mathit{QCoh}^+(\mathcal{O}_ X) \ar[rr]_ a \ar[rd]_{R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (f_*\mathcal{O}_ Y, -)} & & D_\mathit{QCoh}^+(\mathcal{O}_ Y) \ar[ld]^\Phi \\ & D_\mathit{QCoh}^+(f_*\mathcal{O}_ Y) }
is commutative, where a is the right adjoint of Lemma 48.3.1 for f and \Phi is the equivalence of Derived Categories of Schemes, Lemma 36.5.4.
Proof.
(The parenthetical remark follows from More on Morphisms, Lemma 37.60.9.) Since f is pseudo-coherent, the \mathcal{O}_ X-module f_*\mathcal{O}_ Y is pseudo-coherent, see More on Morphisms, Lemma 37.60.8. Thus R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (f_*\mathcal{O}_ Y, -) maps D_\mathit{QCoh}^+(\mathcal{O}_ X) into D_\mathit{QCoh}^+(f_*\mathcal{O}_ Y), see Derived Categories of Schemes, Lemma 36.10.8. Then \Phi \circ a and R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (f_*\mathcal{O}_ Y, -) agree on D_\mathit{QCoh}^+(\mathcal{O}_ X) because these functors are both right adjoint to the restriction functor D_\mathit{QCoh}^+(f_*\mathcal{O}_ Y) \to D_\mathit{QCoh}^+(\mathcal{O}_ X). To see this use Lemmas 48.3.5 and 48.11.2.
\square
Comments (0)
There are also: