The Stacks project

Lemma 48.28.6. Consider a cartesian square

\[ \xymatrix{ X' \ar[d]_{f'} \ar[r]_{g'} & X \ar[d]^ f \\ S' \ar[r]^ g & S } \]

of schemes. Assume $X \to S$ is flat and locally of finite presentation. Let $(K, \xi )$ be a relative dualizing complex for $f$. Set $K' = L(g')^*K$. Let $\xi '$ be the derived base change of $\xi $ (see proof). Then $(K', \xi ')$ is a relative dualizing complex for $f'$.

Proof. Consider the cartesian square

\[ \xymatrix{ X' \ar[d]_{\Delta _{X'/S'}} \ar[r] & X \ar[d]^{\Delta _{X/S}} \\ X' \times _{S'} X' \ar[r]^{g' \times g'} & X \times _ S X } \]

Choose $W \subset X \times _ S X$ open such that $\Delta _{X/S}$ factors through a closed immersion $\Delta : X \to W$. Choose $W' \subset X' \times _{S'} X'$ open such that $\Delta _{X'/S'}$ factors through a closed immersion $\Delta ' : X \to W'$ and such that $(g' \times g')(W') \subset W$. Let us still denote $g' \times g' : W' \to W$ the induced morphism. We have

\[ L(g' \times g')^*\Delta _*\mathcal{O}_ X = \Delta '_*\mathcal{O}_{X'} \quad \text{and}\quad L(g' \times g')^*L\text{pr}_1^*K|_ W = L\text{pr}_1^*K'|_{W'} \]

The first equality holds because $X$ and $X' \times _{S'} X'$ are tor independent over $X \times _ S X$ (see for example More on Morphisms, Lemma 37.69.1). The second holds by transitivity of derived pullback (Cohomology, Lemma 20.27.2). Thus $\xi ' = L(g' \times g')^*\xi $ can be viewed as a map

\[ \xi ' : \Delta '_*\mathcal{O}_{X'} \longrightarrow L\text{pr}_1^*K'|_{W'} \]

Having said this the proof of the lemma is straightforward. First, $K'$ is $S'$-perfect by Derived Categories of Schemes, Lemma 36.35.6. To check that $\xi '$ induces an isomorphism of $\Delta '_*\mathcal{O}_{X'}$ to $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_{W'}}( \Delta '_*\mathcal{O}_{X'}, L\text{pr}_1^*K'|_{W'})$ we may work affine locally. By Lemma 48.28.2 we reduce to the corresponding statement in algebra which is proven in Dualizing Complexes, Lemma 47.27.4. $\square$

Comments (0)

There are also:

  • 2 comment(s) on Section 48.28: Relative dualizing complexes

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0E2Y. Beware of the difference between the letter 'O' and the digit '0'.