The Stacks project

Lemma 48.28.7. Let $S$ be a quasi-compact and quasi-separated scheme. Let $f : X \to S$ be a proper, flat morphism of finite presentation. The relative dualizing complex $\omega _{X/S}^\bullet $ of Remark 48.12.5 together with (48.12.8.1) is a relative dualizing complex in the sense of Definition 48.28.1.

Proof. In Lemma 48.12.7 we proved that $\omega _{X/S}^\bullet $ is $S$-perfect. Let $c$ be the right adjoint of Lemma 48.3.1 for the diagonal $\Delta : X \to X \times _ S X$. Then we can apply $\Delta _*$ to (48.12.8.1) to get an isomorphism

\[ \Delta _*\mathcal{O}_ X \to \Delta _*(c(L\text{pr}_1^*\omega _{X/S}^\bullet )) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_{X \times _ S X}}( \Delta _*\mathcal{O}_ X, L\text{pr}_1^*\omega _{X/S}^\bullet ) \]

The equality holds by Lemmas 48.9.7 and 48.9.3. This finishes the proof. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 48.28: Relative dualizing complexes

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0E2Z. Beware of the difference between the letter 'O' and the digit '0'.