Remark 48.27.6. Let X be a proper Cohen-Macaulay scheme over a field k which is equidimensional of dimension d. Let \omega _ X^\bullet and \omega _ X be as in Lemma 48.27.1. By Lemma 48.27.5 we have \omega _ X^\bullet = \omega _ X[d]. Let t : H^ d(X, \omega _ X) \to k be the map of Remark 48.27.2. Let \mathcal{E} be a finite locally free \mathcal{O}_ X-module with dual \mathcal{E}^\vee . Then we have perfect pairings
where \cup is the cup-product and \epsilon : \mathcal{E}^\vee \otimes _{\mathcal{O}_ X} \mathcal{E} \to \mathcal{O}_ X is the evaluation map. This is a special case of Lemma 48.27.4.
Comments (0)
There are also: