The Stacks project

Lemma 48.27.7. Let $X$ be a proper scheme over a field $k$. Let $\omega _ X^\bullet $ and $\omega _ X$ be as in Lemma 48.27.1.

  1. If $X \to \mathop{\mathrm{Spec}}(k)$ factors as $X \to \mathop{\mathrm{Spec}}(k') \to \mathop{\mathrm{Spec}}(k)$ for some field $k'$, then $\omega _ X^\bullet $ and $\omega _ X$ are as in Lemma 48.27.1 for the morphism $X \to \mathop{\mathrm{Spec}}(k')$.

  2. If $K/k$ is a field extension, then the pullback of $\omega _ X^\bullet $ and $\omega _ X$ to the base change $X_ K$ are as in Lemma 48.27.1 for the morphism $X_ K \to \mathop{\mathrm{Spec}}(K)$.

Proof. Denote $f : X \to \mathop{\mathrm{Spec}}(k)$ the structure morphism and denote $f' : X \to \mathop{\mathrm{Spec}}(k')$ the given factorization. In the proof of Lemma 48.27.1 we took $\omega _ X^\bullet = a(\mathcal{O}_{\mathop{\mathrm{Spec}}(k)})$ where $a$ be is the right adjoint of Lemma 48.3.1 for $f$. Thus we have to show $a(\mathcal{O}_{\mathop{\mathrm{Spec}}(k)}) \cong a'(\mathcal{O}_{\mathop{\mathrm{Spec}}(k)})$ where $a'$ be is the right adjoint of Lemma 48.3.1 for $f'$. Since $k' \subset H^0(X, \mathcal{O}_ X)$ we see that $k'/k$ is a finite extension (Cohomology of Schemes, Lemma 30.19.2). By uniqueness of adjoints we have $a = a' \circ b$ where $b$ is the right adjoint of Lemma 48.3.1 for $g : \mathop{\mathrm{Spec}}(k') \to \mathop{\mathrm{Spec}}(k)$. Another way to say this: we have $f^! = (f')^! \circ g^!$. Thus it suffices to show that $\mathop{\mathrm{Hom}}\nolimits _ k(k', k) \cong k'$ as $k'$-modules, see Example 48.3.2. This holds because these are $k'$-vector spaces of the same dimension (namely dimension $1$).

Proof of (2). This holds because we have base change for $a$ by Lemma 48.6.2. See discussion in Remark 48.12.5. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 48.27: Duality for proper schemes over fields

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FW1. Beware of the difference between the letter 'O' and the digit '0'.