The Stacks project

Lemma 48.14.1. As above, let $X$ be a scheme and let $D \subset X$ be an effective Cartier divisor. There is a canonical isomorphism $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ D, \mathcal{O}_ X) = \mathcal{N}[-1]$ in $D(\mathcal{O}_ D)$.

Proof. Equivalently, we are saying that $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ D, \mathcal{O}_ X)$ has a unique nonzero cohomology sheaf in degree $1$ and that this sheaf is isomorphic to $\mathcal{N}$. Since $i_*$ is exact and fully faithful, it suffices to prove that $i_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ D, \mathcal{O}_ X)$ is isomorphic to $i_*\mathcal{N}[-1]$. We have $i_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ D, \mathcal{O}_ X) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(i_*\mathcal{O}_ D, \mathcal{O}_ X)$ by Lemma 48.9.3. We have a resolution

\[ 0 \to \mathcal{I} \to \mathcal{O}_ X \to i_*\mathcal{O}_ D \to 0 \]

where $\mathcal{I}$ is the ideal sheaf of $D$ which we can use to compute. Since $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{O}_ X, \mathcal{O}_ X) = \mathcal{O}_ X$ and $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{I}, \mathcal{O}_ X) = \mathcal{O}_ X(D)$ by a local computation, we see that

\[ R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(i_*\mathcal{O}_ D, \mathcal{O}_ X) = (\mathcal{O}_ X \to \mathcal{O}_ X(D)) \]

where on the right hand side we have $\mathcal{O}_ X$ in degree $0$ and $\mathcal{O}_ X(D)$ in degree $1$. The result follows from the short exact sequence

\[ 0 \to \mathcal{O}_ X \to \mathcal{O}_ X(D) \to i_*\mathcal{N} \to 0 \]

coming from the fact that $D$ is the zero scheme of the canonical section of $\mathcal{O}_ X(D)$ and from the fact that $\mathcal{N} = i^*\mathcal{O}_ X(D)$. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0B4B. Beware of the difference between the letter 'O' and the digit '0'.