The Stacks project

Lemma 48.24.6. The property $\mathcal{P}(S) =$“$S$ is Gorenstein” is local in the syntomic topology.

Proof. Let $\{ S_ i \to S\} $ be a syntomic covering. The scheme $S$ is locally Noetherian if and only if each $S_ i$ is Noetherian, see Descent, Lemma 35.16.1. Thus we may now assume $S$ and $S_ i$ are locally Noetherian. If $S$ is Gorenstein, then each $S_ i$ is Gorenstein by Lemma 48.24.5. Conversely, if each $S_ i$ is Gorenstein, then for each point $s \in S$ we can pick $i$ and $t \in S_ i$ mapping to $s$. Then $\mathcal{O}_{S, s} \to \mathcal{O}_{S_ i, t}$ is a flat local ring homomorphism with $\mathcal{O}_{S_ i, t}$ Gorenstein. Hence $\mathcal{O}_{S, s}$ is Gorenstein by Dualizing Complexes, Lemma 47.21.8. $\square$

Comments (0)

There are also:

  • 4 comment(s) on Section 48.24: Gorenstein schemes

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0C01. Beware of the difference between the letter 'O' and the digit '0'.