Lemma 48.30.8. Let X be a Noetherian scheme. Let \mathcal{I} \subset \mathcal{O}_ X be a quasi-coherent sheaf of ideals. Let \mathcal{F}^\bullet be a complex of coherent \mathcal{O}_ X-modules. Let p \in \mathbf{Z}. Set \mathcal{H} = H^ p(\mathcal{F}^\bullet ) and \mathcal{H}_ n = H^ p(\mathcal{I}^ n\mathcal{F}^\bullet ). Then there are canonical \mathcal{O}_ X-module maps
There exists a c > 0 such that for n \geq c the image of \mathcal{H}_ n \to \mathcal{H} is contained in \mathcal{I}^{n - c}\mathcal{H} and there is a canonical \mathcal{O}_ X-module map \mathcal{I}^ n\mathcal{H} \to \mathcal{H}_{n - c} such that the compositions
are the canonical ones. In particular, the inverse systems (\mathcal{H}_ n) and (\mathcal{I}^ n\mathcal{H}) are isomorphic as pro-objects of \textit{Mod}(\mathcal{O}_ X).
Comments (0)