Lemma 48.22.5. Let X/A with dualizing module \omega _ X be as in Example 48.22.1. Let d = \dim (X_ s) be the dimension of the closed fibre. If \dim (X) = d + \dim (A), then the dualizing module \omega _ X represents the functor
\mathcal{F} \longmapsto \mathop{\mathrm{Hom}}\nolimits _ A(H^ d(X, \mathcal{F}), \omega _ A)
on the category of coherent \mathcal{O}_ X-modules.
Proof.
We have
\begin{align*} \mathop{\mathrm{Hom}}\nolimits _ X(\mathcal{F}, \omega _ X) & = \mathop{\mathrm{Ext}}\nolimits ^{-\dim (X)}_ X(\mathcal{F}, \omega _ X^\bullet ) \\ & = \mathop{\mathrm{Hom}}\nolimits _ X(\mathcal{F}[\dim (X)], \omega _ X^\bullet ) \\ & = \mathop{\mathrm{Hom}}\nolimits _ X(\mathcal{F}[\dim (X)], f^!(\omega _ A^\bullet )) \\ & = \mathop{\mathrm{Hom}}\nolimits _ S(Rf_*\mathcal{F}[\dim (X)], \omega _ A^\bullet ) \\ & = \mathop{\mathrm{Hom}}\nolimits _ A(H^ d(X, \mathcal{F}), \omega _ A) \end{align*}
The first equality because H^ i(\omega _ X^\bullet ) = 0 for i < -\dim (X), see Lemma 48.22.4 and Derived Categories, Lemma 13.27.3. The second equality is follows from the definition of Ext groups. The third equality is our choice of \omega _ X^\bullet . The fourth equality holds because f^! is the right adjoint of Lemma 48.3.1 for f, see Section 48.19. The final equality holds because R^ if_*\mathcal{F} is zero for i > d (Cohomology of Schemes, Lemma 30.20.9) and H^ j(\omega _ A^\bullet ) is zero for j < -\dim (A).
\square
Comments (0)