The Stacks project

Lemma 48.33.2. With notation as in Lemma 48.33.1 suppose $U' \subset U$ is an open subscheme. Then the diagram

\[ \xymatrix{ \mathop{\mathrm{Hom}}\nolimits _ k(H^ i(U, K), k) \ar[rr] & & H^{-i}_ c(U, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(K, \omega _{U/k}^\bullet )) \\ \mathop{\mathrm{Hom}}\nolimits _ k(H^ i(U', K|_{U'}), k) \ar[rr] \ar[u] & & H^{-i}_ c(U', R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_{U'}}(K, \omega _{U'/k}^\bullet )) \ar[u] } \]

is commutative. Here the horizontal arrows are the isomorphisms of Lemma 48.33.1, the vertical arrow on the left is the contragredient to the restriction map $H^ i(U, K) \to H^ i(U', K|_{U'})$, and the right vertical arrow is Remark 48.32.7 (see discussion before the lemma).

Proof. We strongly urge the reader to skip this proof. Choose $X$ and $M$ as in the proof of Lemma 48.33.1. We are going to drop the subscript $\mathcal{O}_ X$ from $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits $ and $\otimes ^\mathbf {L}$. We write

\[ H^ i(U, K) = \mathop{\mathrm{colim}}\nolimits H^ i(X, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{I}^ n, M)) \]

and

\[ H^ i(U', K|_{U'}) = \mathop{\mathrm{colim}}\nolimits H^ i(X, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits ((\mathcal{I}')^ n, M)) \]

as in the proof of Lemma 48.33.1 where we choose $\mathcal{I}' \subset \mathcal{I}$ as in the discussion in Remark 48.31.3 so that the map $H^ i(U, K) \to H^ i(U', K|_{U'})$ is induced by the maps $(\mathcal{I}')^ n \to \mathcal{I}^ n$. We similarly write

\[ H^ i_ c(U, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, \omega _{U/k}^\bullet )) = \mathop{\mathrm{lim}}\nolimits H^ i(X, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (M, \omega _{X/k}^\bullet ) \otimes ^\mathbf {L} \mathcal{I}^ n) \]

and

\[ H^ i_ c(U', R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K|_{U'}, \omega _{U'/k}^\bullet )) = \mathop{\mathrm{lim}}\nolimits H^ i(X, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (M, \omega _{X/k}^\bullet ) \otimes ^\mathbf {L} (\mathcal{I}')^ n) \]

so that the arrow $H^ i_ c(U', R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K|_{U'}, \omega _{U'/k}^\bullet )) \to H^ i_ c(U, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, \omega _{U/k}^\bullet ))$ is similarly deduced from the maps $(\mathcal{I}')^ n \to \mathcal{I}^ n$. The diagrams

\[ \xymatrix{ R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (M, \omega _{X/k}^\bullet ) \otimes ^\mathbf {L} \mathcal{I}^ n \ar[rr] & & R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{I}^ n, M), \omega _{X/k}^\bullet ) \\ R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (M, \omega _{X/k}^\bullet ) \otimes ^\mathbf {L} (\mathcal{I}')^ n \ar[rr] \ar[u] & & R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (R\mathop{\mathcal{H}\! \mathit{om}}\nolimits ((\mathcal{I}')^ n, M), \omega _{X/k}^\bullet ) \ar[u] } \]

commute because the construction of the horizontal arrows in Cohomology, Lemma 20.42.9 is functorial in all three entries. Hence we finally come down to the assertion that the diagrams

\[ \xymatrix{ \mathop{\mathrm{Hom}}\nolimits _ k(H^ i(X, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{I}^ n, M)), k) \ar[r] & H^{-i}(X, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (R\mathop{\mathcal{H}\! \mathit{om}}\nolimits ( \mathcal{I}^ n, M), \omega _{X/k}^\bullet )) \\ \mathop{\mathrm{Hom}}\nolimits _ k(H^ i(X, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits ((\mathcal{I}')^ n, M)), k) \ar[r] \ar[u] & H^{-i}(X, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (R\mathop{\mathcal{H}\! \mathit{om}}\nolimits ( (\mathcal{I}')^ n, M), \omega _{X/k}^\bullet )) \ar[u] } \]

commute. This is true because the duality isomorphism

\[ \mathop{\mathrm{Hom}}\nolimits _ k(H^ i(X, L), k) = \mathop{\mathrm{Ext}}\nolimits ^{-i}_ X(L, \omega _{X/k}^\bullet ) = H^{-i}(X, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, \omega _{X/k}^\bullet )) \]

is functorial for $L$ in $D_\mathit{QCoh}(\mathcal{O}_ X)$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0G5B. Beware of the difference between the letter 'O' and the digit '0'.