The Stacks project

Lemma 48.20.9. Let $(S, \omega _ S^\bullet )$ be as in Situation 48.20.1. With $f^!_{new}$ and $\omega _ X^\bullet $ defined for all (morphisms of) schemes of finite type over $S$ as above:

  1. the functors $f^!_{new}$ and the arrows $(g \circ f)^!_{new} \to f^!_{new} \circ g^!_{new}$ turn $D_{\textit{Coh}}^+$ into a pseudo functor from the category of schemes of finite type over $S$ into the $2$-category of categories,

  2. $\omega _ X^\bullet = (X \to S)^!_{new} \omega _ S^\bullet $,

  3. the functor $D_ X$ defines an involution of $D_{\textit{Coh}}(\mathcal{O}_ X)$ switching $D_{\textit{Coh}}^+(\mathcal{O}_ X)$ and $D_{\textit{Coh}}^-(\mathcal{O}_ X)$ and fixing $D_{\textit{Coh}}^ b(\mathcal{O}_ X)$,

  4. $\omega _ X^\bullet = f^!_{new}\omega _ Y^\bullet $ for $f : X \to Y$ a morphism of finite type schemes over $S$,

  5. $f^!_{new}M = D_ X(Lf^*D_ Y(M))$ for $M \in D_{\textit{Coh}}^+(\mathcal{O}_ Y)$, and

  6. if in addition $f$ is proper, then $f^!_{new}$ is isomorphic to the restriction of the right adjoint of $Rf_* : D_\mathit{QCoh}(\mathcal{O}_ X) \to D_\mathit{QCoh}(\mathcal{O}_ Y)$ to $D_{\textit{Coh}}^+(\mathcal{O}_ Y)$ and there is a canonical isomorphism

    \[ Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(K, f^!_{new}M) \to R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(Rf_*K, M) \]

    for $K \in D^-_{\textit{Coh}}(\mathcal{O}_ X)$ and $M \in D_{\textit{Coh}}^+(\mathcal{O}_ Y)$, and

    \[ Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(K, \omega _ X^\bullet ) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(Rf_*K, \omega _ Y^\bullet ) \]

    for $K \in D^-_{\textit{Coh}}(\mathcal{O}_ X)$ and

If $X$ is separated over $S$, then $\omega _ X^\bullet $ is canonically isomorphic to $(X \to S)^!\omega _ S^\bullet $ and if $f$ is a morphism between schemes separated over $S$, then there is a canonical isomorphism1 $f_{new}^!K = f^!K$ for $K$ in $D_{\textit{Coh}}^+$.

Proof. Let $f : X \to Y$, $g : Y \to Z$, $h : Z \to T$ be morphisms of schemes of finite type over $S$. We have to show that

\[ \xymatrix{ (h \circ g \circ f)^!_{new} \ar[r] \ar[d] & f^!_{new} \circ (h \circ g)^!_{new} \ar[d] \\ (g \circ f)^!_{new} \circ h^!_{new} \ar[r] & f^!_{new} \circ g^!_{new} \circ h^!_{new} } \]

is commutative. Let $\eta _ Y : \text{id} \to D_ Y^2$ and $\eta _ Z : \text{id} \to D_ Z^2$ be the canonical isomorphisms of Lemma 48.2.5. Then, using Categories, Lemma 4.28.2, a computation (omitted) shows that both arrows $(h \circ g \circ f)^!_{new} \to f^!_{new} \circ g^!_{new} \circ h^!_{new}$ are given by

\[ 1 \star \eta _ Y \star 1 \star \eta _ Z \star 1 : D_ X \circ Lf^* \circ Lg^* \circ Lh^* \circ D_ T \longrightarrow D_ X \circ Lf^* \circ D_ Y^2 \circ Lg^* \circ D_ Z^2 \circ Lh^* \circ D_ T \]

This proves (1). Part (2) is immediate from the definition of $(X \to S)^!_{new}$ and the fact that $D_ S(\omega _ S^\bullet ) = \mathcal{O}_ S$. Part (3) is Lemma 48.2.5. Part (4) follows by the same argument as part (2). Part (5) is the definition of $f^!_{new}$.

Proof of (6). Let $a$ be the right adjoint of Lemma 48.3.1 for the proper morphism $f : X \to Y$ of schemes of finite type over $S$. The issue is that we do not know $X$ or $Y$ is separated over $S$ (and in general this won't be true) hence we cannot immediately apply Lemma 48.17.8 to $f$ over $S$. To get around this we use the canonical identification $\omega _ X^\bullet = a(\omega _ Y^\bullet )$ of Lemma 48.20.8. Hence $f^!_{new}$ is the restriction of $a$ to $D_{\textit{Coh}}^+(\mathcal{O}_ Y)$ by Lemma 48.17.8 applied to $f : X \to Y$ over the base scheme $Y$! The displayed equalities hold by Example 48.3.9.

The final assertions follow from the construction of normalized dualizing complexes and the already used Lemma 48.17.8. $\square$

[1] We haven't checked that these are compatible with the isomorphisms $(g \circ f)^! \to f^! \circ g^!$ and $(g \circ f)^!_{new} \to f^!_{new} \circ g^!_{new}$. We will do this here if we need this later.

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AUE. Beware of the difference between the letter 'O' and the digit '0'.