Lemma 48.20.9. Let (S, \omega _ S^\bullet ) be as in Situation 48.20.1. With f^!_{new} and \omega _ X^\bullet defined for all (morphisms of) schemes of finite type over S as above:
the functors f^!_{new} and the arrows (g \circ f)^!_{new} \to f^!_{new} \circ g^!_{new} turn D_{\textit{Coh}}^+ into a pseudo functor from the category of schemes of finite type over S into the 2-category of categories,
\omega _ X^\bullet = (X \to S)^!_{new} \omega _ S^\bullet ,
the functor D_ X defines an involution of D_{\textit{Coh}}(\mathcal{O}_ X) switching D_{\textit{Coh}}^+(\mathcal{O}_ X) and D_{\textit{Coh}}^-(\mathcal{O}_ X) and fixing D_{\textit{Coh}}^ b(\mathcal{O}_ X),
\omega _ X^\bullet = f^!_{new}\omega _ Y^\bullet for f : X \to Y a morphism of finite type schemes over S,
f^!_{new}M = D_ X(Lf^*D_ Y(M)) for M \in D_{\textit{Coh}}^+(\mathcal{O}_ Y), and
if in addition f is proper, then f^!_{new} is isomorphic to the restriction of the right adjoint of Rf_* : D_\mathit{QCoh}(\mathcal{O}_ X) \to D_\mathit{QCoh}(\mathcal{O}_ Y) to D_{\textit{Coh}}^+(\mathcal{O}_ Y) and there is a canonical isomorphism
Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(K, f^!_{new}M) \to R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(Rf_*K, M)for K \in D^-_{\textit{Coh}}(\mathcal{O}_ X) and M \in D_{\textit{Coh}}^+(\mathcal{O}_ Y), and
Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(K, \omega _ X^\bullet ) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(Rf_*K, \omega _ Y^\bullet )for K \in D^-_{\textit{Coh}}(\mathcal{O}_ X) and
If X is separated over S, then \omega _ X^\bullet is canonically isomorphic to (X \to S)^!\omega _ S^\bullet and if f is a morphism between schemes separated over S, then there is a canonical isomorphism1 f_{new}^!K = f^!K for K in D_{\textit{Coh}}^+.
Comments (0)