Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Example 48.3.9. Let $f : X \to Y$ be a proper morphism of Noetherian schemes, $L \in D^-_{\textit{Coh}}(X)$ and $K \in D^+_{\mathit{QCoh}}(\mathcal{O}_ Y)$. Then the map $Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(L, a(K)) \to R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(Rf_*L, K)$ is an isomorphism. Namely, the complexes $L$ and $Rf_*L$ are pseudo-coherent by Derived Categories of Schemes, Lemmas 36.10.3 and 36.11.3 and the discussion in Remark 48.3.8 applies.


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.