Lemma 48.2.8. Let X be a locally Noetherian scheme. Let \omega _ X^\bullet be a dualizing complex on X with associated dimension function \delta . Let \mathcal{F} be a coherent \mathcal{O}_ X-module. Set \mathcal{E}^ i = \mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^{-i}_{\mathcal{O}_ X}(\mathcal{F}, \omega _ X^\bullet ). Then \mathcal{E}^ i is a coherent \mathcal{O}_ X-module and for x \in X we have
\mathcal{E}^ i_ x is nonzero only for \delta (x) \leq i \leq \delta (x) + \dim (\text{Supp}(\mathcal{F}_ x)),
\dim (\text{Supp}(\mathcal{E}^{i + \delta (x)}_ x)) \leq i,
\text{depth}(\mathcal{F}_ x) is the smallest integer i \geq 0 such that \mathcal{E}_ x^{i + \delta (x)} \not= 0, and
we have x \in \text{Supp}(\bigoplus _{j \leq i} \mathcal{E}^ j) \Leftrightarrow \text{depth}_{\mathcal{O}_{X, x}}(\mathcal{F}_ x) + \delta (x) \leq i.
Comments (0)
There are also: