The Stacks project

Lemma 48.8.2. Suppose we have a diagram ( where $f$ and $g$ are tor independent. Let $K \in D_\mathit{QCoh}(\mathcal{O}_ Y)$. The diagram

\[ \xymatrix{ L(g')^*(Lf^*K \otimes ^\mathbf {L}_{\mathcal{O}_ X} a(\mathcal{O}_ Y)) \ar[r] \ar[d] & L(g')^*a(K) \ar[d] \\ L(f')^*Lg^*K \otimes _{\mathcal{O}_{X'}}^\mathbf {L} a'(\mathcal{O}_{Y'}) \ar[r] & a'(Lg^*K) } \]

commutes where the horizontal arrows are the maps ( for $K$ and $Lg^*K$ and the vertical maps are constructed using Cohomology, Remark 20.28.3 and (

Proof. In this proof we will write $f_*$ for $Rf_*$ and $f^*$ for $Lf^*$, etc, and we will write $\otimes $ for $\otimes ^\mathbf {L}_{\mathcal{O}_ X}$, etc. Let us write ( as the composition

\begin{align*} f^*K \otimes a(\mathcal{O}_ Y) & \to a(f_*(f^*K \otimes a(\mathcal{O}_ Y))) \\ & \leftarrow a(K \otimes f_*a(\mathcal{O}_ K)) \\ & \to a(K \otimes \mathcal{O}_ Y) \\ & \to a(K) \end{align*}

Here the first arrow is the unit $\eta _ f$, the second arrow is $a$ applied to Cohomology, Equation ( which is an isomorphism by Derived Categories of Schemes, Lemma 36.22.1, the third arrow is $a$ applied to $\text{id}_ K \otimes \text{Tr}_ f$, and the fourth arrow is $a$ applied to the isomorphism $K \otimes \mathcal{O}_ Y = K$. The proof of the lemma consists in showing that each of these maps gives rise to a commutative square as in the statement of the lemma. For $\eta _ f$ and $\text{Tr}_ f$ this is Lemmas 48.7.2 and 48.7.1. For the arrow using Cohomology, Equation ( this is Cohomology, Remark 20.54.5. For the multiplication map it is clear. This finishes the proof. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0B6P. Beware of the difference between the letter 'O' and the digit '0'.