Processing math: 100%

The Stacks project

Lemma 48.8.1. Let f : X \to Y be a morphism of quasi-compact and quasi-separated schemes. The map Lf^*K \otimes ^\mathbf {L}_{\mathcal{O}_ X} a(L) \to a(K \otimes _{\mathcal{O}_ Y}^\mathbf {L} L) defined above for K, L \in D_\mathit{QCoh}(\mathcal{O}_ Y) is an isomorphism if K is perfect. In particular, (48.8.0.1) is an isomorphism if K is perfect.

Proof. Let K^\vee be the “dual” to K, see Cohomology, Lemma 20.50.5. For M \in D_\mathit{QCoh}(\mathcal{O}_ X) we have

\begin{align*} \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ Y)}(Rf_*M, K \otimes ^\mathbf {L}_{\mathcal{O}_ Y} L) & = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ Y)}( Rf_*M \otimes ^\mathbf {L}_{\mathcal{O}_ Y} K^\vee , L) \\ & = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}( M \otimes ^\mathbf {L}_{\mathcal{O}_ X} Lf^*K^\vee , a(L)) \\ & = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(M, Lf^*K \otimes ^\mathbf {L}_{\mathcal{O}_ X} a(L)) \end{align*}

Second equality by the definition of a and the projection formula (Cohomology, Lemma 20.54.3) or the more general Derived Categories of Schemes, Lemma 36.22.1. Hence the result by the Yoneda lemma. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.