Lemma 48.24.4. Let $X$ be a locally Noetherian scheme.
If $X$ has a dualizing complex $\omega _ X^\bullet $, then
$X$ is Gorenstein $\Leftrightarrow $ $\omega _ X^\bullet $ is an invertible object of $D(\mathcal{O}_ X)$,
$\mathcal{O}_{X, x}$ is Gorenstein $\Leftrightarrow $ $\omega _{X, x}^\bullet $ is an invertible object of $D(\mathcal{O}_{X, x})$,
$U = \{ x \in X \mid \mathcal{O}_{X, x}\text{ is Gorenstein}\} $ is an open Gorenstein subscheme.
If $X$ is Gorenstein, then $X$ has a dualizing complex if and only if $\mathcal{O}_ X[0]$ is a dualizing complex.
Comments (0)
There are also: