The Stacks project

Lemma 48.25.9. Let $f : X \to Y$ be a morphism of schemes which is flat and locally of finite type. Then formation of the set $\{ x \in X \mid f\text{ is Gorenstein at }x\} $ commutes with arbitrary base change.

Proof. The assumption implies any fibre of $f$ is locally of finite type over a field and hence locally Noetherian and the same is true for any base change. Thus the statement makes sense. Looking at fibres we reduce to the following problem: let $X$ be a scheme locally of finite type over a field $k$, let $K/k$ be a field extension, and let $x_ K \in X_ K$ be a point with image $x \in X$. Problem: show that $\mathcal{O}_{X_ K, x_ K}$ is Gorenstein if and only if $\mathcal{O}_{X, x}$ is Gorenstein.

The problem can be solved using a bit of algebra as follows. Choose an affine open $\mathop{\mathrm{Spec}}(A) \subset X$ containing $x$. Say $x$ corresponds to $\mathfrak p \subset A$. With $A_ K = A \otimes _ k K$ we see that $\mathop{\mathrm{Spec}}(A_ K) \subset X_ K$ contains $x_ K$. Say $x_ K$ corresponds to $\mathfrak p_ K \subset A_ K$. Let $\omega _ A^\bullet $ be a dualizing complex for $A$. By Dualizing Complexes, Lemma 47.25.3 $\omega _ A^\bullet \otimes _ A A_ K$ is a dualizing complex for $A_ K$. Now we are done because $A_\mathfrak p \to (A_ K)_{\mathfrak p_ K}$ is a flat local homomorphism of Noetherian rings and hence $(\omega _ A^\bullet )_\mathfrak p$ is an invertible object of $D(A_\mathfrak p)$ if and only if $(\omega _ A^\bullet )_\mathfrak p \otimes _{A_\mathfrak p} (A_ K)_{\mathfrak p_ K}$ is an invertible object of $D((A_ K)_{\mathfrak p_ K})$. Some details omitted; hint: look at cohomology modules. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0E0Q. Beware of the difference between the letter 'O' and the digit '0'.