The Stacks project

Lemma 48.25.8. Let $f : X \to Y$ be a morphism of schemes. Assume that all the fibres $X_ y$ are locally Noetherian schemes. Let $Y' \to Y$ be locally of finite type. Let $f' : X' \to Y'$ be the base change of $f$. Let $x' \in X'$ be a point with image $x \in X$.

  1. If $f$ is Gorenstein at $x$, then $f' : X' \to Y'$ is Gorenstein at $x'$.

  2. If $f$ is flat at $x$ and $f'$ is Gorenstein at $x'$, then $f$ is Gorenstein at $x$.

  3. If $Y' \to Y$ is flat at $f'(x')$ and $f'$ is Gorenstein at $x'$, then $f$ is Gorenstein at $x$.

Proof. Note that the assumption on $Y' \to Y$ implies that for $y' \in Y'$ mapping to $y \in Y$ the field extension $\kappa (y')/\kappa (y)$ is finitely generated. Hence also all the fibres $X'_{y'} = (X_ y)_{\kappa (y')}$ are locally Noetherian, see Varieties, Lemma 33.11.1. Thus the lemma makes sense. Set $y' = f'(x')$ and $y = f(x)$. Hence we get the following commutative diagram of local rings

\[ \xymatrix{ \mathcal{O}_{X', x'} & \mathcal{O}_{X, x} \ar[l] \\ \mathcal{O}_{Y', y'} \ar[u] & \mathcal{O}_{Y, y} \ar[l] \ar[u] } \]

where the upper left corner is a localization of the tensor product of the upper right and lower left corners over the lower right corner.

Assume $f$ is Gorenstein at $x$. The flatness of $\mathcal{O}_{Y, y} \to \mathcal{O}_{X, x}$ implies the flatness of $\mathcal{O}_{Y', y'} \to \mathcal{O}_{X', x'}$, see Algebra, Lemma 10.100.1. The fact that $\mathcal{O}_{X, x}/\mathfrak m_ y\mathcal{O}_{X, x}$ is Gorenstein implies that $\mathcal{O}_{X', x'}/\mathfrak m_{y'}\mathcal{O}_{X', x'}$ is Gorenstein, see Lemma 48.25.1. Hence we see that $f'$ is Gorenstein at $x'$.

Assume $f$ is flat at $x$ and $f'$ is Gorenstein at $x'$. The fact that $\mathcal{O}_{X', x'}/\mathfrak m_{y'}\mathcal{O}_{X', x'}$ is Gorenstein implies that $\mathcal{O}_{X, x}/\mathfrak m_ y\mathcal{O}_{X, x}$ is Gorenstein, see Lemma 48.25.1. Hence we see that $f$ is Gorenstein at $x$.

Assume $Y' \to Y$ is flat at $y'$ and $f'$ is Gorenstein at $x'$. The flatness of $\mathcal{O}_{Y', y'} \to \mathcal{O}_{X', x'}$ and $\mathcal{O}_{Y, y} \to \mathcal{O}_{Y', y'}$ implies the flatness of $\mathcal{O}_{Y, y} \to \mathcal{O}_{X, x}$, see Algebra, Lemma 10.100.1. The fact that $\mathcal{O}_{X', x'}/\mathfrak m_{y'}\mathcal{O}_{X', x'}$ is Gorenstein implies that $\mathcal{O}_{X, x}/\mathfrak m_ y\mathcal{O}_{X, x}$ is Gorenstein, see Lemma 48.25.1. Hence we see that $f$ is Gorenstein at $x$. $\square$


Comments (4)

Comment #7719 by Andrew on

I am confused by (2). Let where is an order in a number field. The fiber of over is Gorenstein, for its localisation at any maximal ideal is, after a finite basechange along , of the form which has the simple socle , and is therefore Gorenstein by, e.g., Prop. 21.5 of Eisenbud. Assertion (2) implies that is Gorenstein at but was arbitrary, and number fields of degree contain non-Gorenstein orders. For the same reason, I am also confused by Lemma 0C05.

Comment #7720 by on

If you compute through an example, you will find that your assertion about the base change does not hold --- that is the point of this lemma.

Comment #7721 by Laurent Moret-Bailly on

Typo in (2): " is flat and ".


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0C07. Beware of the difference between the letter 'O' and the digit '0'.