Lemma 48.25.7. Let $f : X \to Y$ be a flat morphism of locally Noetherian schemes. If $X$ is Gorenstein, then $f$ is Gorenstein and $\mathcal{O}_{Y, f(x)}$ is Gorenstein for all $x \in X$.
Gorensteinnes of the total space of a flat fibration implies same for base and fibres
Proof.
After translating into algebra this follows from Dualizing Complexes, Lemma 47.21.8.
$\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (1)
Comment #3588 by slogan_bot on