Loading web-font TeX/Main/Regular

The Stacks project

Lemma 48.20.6. Let (S, \omega _ S^\bullet ) be as in Situation 48.20.1. Let f : X \to Y be a morphism of finite type schemes over S. Let \omega _ X^\bullet and \omega _ Y^\bullet be dualizing complexes normalized relative to \omega _ S^\bullet . Then \omega _ X^\bullet is a dualizing complex normalized relative to \omega _ Y^\bullet .

Proof. This is just a matter of bookkeeping. Choose a finite affine open covering \mathcal{V} : Y = \bigcup V_ j. For each j choose a finite affine open covering f^{-1}(V_ j) = U_{ji}. Set \mathcal{U} : X = \bigcup U_{ji}. The schemes V_ j and U_{ji} are separated over S, hence we have the upper shriek functors for q_ j : V_ j \to S, p_{ji} : U_{ji} \to S and f_{ji} : U_{ji} \to V_ j and f_{ji}' : U_{ji} \to Y. Let (L, \beta _ j) be a dualizing complex normalized relative to \omega _ S^\bullet and \mathcal{V}. Let (K, \gamma _{ji}) be a dualizing complex normalized relative to \omega _ S^\bullet and \mathcal{U}. (In other words, L = \omega _ Y^\bullet and K = \omega _ X^\bullet .) We can define

\alpha _{ji} : K|_{U_{ji}} \xrightarrow {\gamma _{ji}} p_{ji}^!\omega _ S^\bullet = f_{ji}^!q_ j^!\omega _ S^\bullet \xrightarrow {f_{ji}^!\beta _ j^{-1}} f_{ji}^!(L|_{V_ j}) = (f_{ji}')^!(L)

To finish the proof we have to show that \alpha _{ji}|_{U_{ji} \cap U_{j'i'}} \circ \alpha _{j'i'}^{-1}|_{U_{ji} \cap U_{j'i'}} is the canonical isomorphism (f_{ji}')^!(L)|_{U_{ji} \cap U_{j'i'}} \to (f_{j'i'}')^!(L)|_{U_{ji} \cap U_{j'i'}}. This is formal and we omit the details. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.