The Stacks project

Remark 48.30.6. Let $(A_ n)$ and $(B_ n)$ be inverse systems of a category $\mathcal{C}$. Let us say a linear-pro-morphism from $(A_ n)$ to $(B_ n)$ is given by a compatible family of morphisms $\varphi _ n : A_{cn + d} \to B_ n$ for all $n \geq 1$ for some fixed integers $c, d \geq 1$. We'll say $(\varphi _ n : A_{cn + d} \to B_ n)$ and $(\psi _ n : A_{c'n + d'} \to B_ n)$ determine the same morphism if there exist $c'' \geq \max (c, c')$ and $d'' \geq \max (d, d')$ such that the two induced morphisms $A_{c'' n + d''} \to B_ n$ are the same for all $n$. It seems likely that Deligne systems $(K_ n)$ with given value on $U$ are well defined up to linear-pro-isomorphisms. If we ever need this we will carefully formulate and prove this here.

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0G4P. Beware of the difference between the letter 'O' and the digit '0'.