Example 48.3.4. If f : X \to Y is a proper or even finite morphism of Noetherian schemes, then the right adjoint of Rf_* : D_\mathit{QCoh}(\mathcal{O}_ X) \to D_\mathit{QCoh}(\mathcal{O}_ Y) does not map D_\mathit{QCoh}^-(\mathcal{O}_ Y) into D_\mathit{QCoh}^-(\mathcal{O}_ X). Namely, let k be a field, let k[\epsilon ] be the dual numbers over k, let X = \mathop{\mathrm{Spec}}(k), and let Y = \mathop{\mathrm{Spec}}(k[\epsilon ]). Then \mathop{\mathrm{Ext}}\nolimits ^ i_{k[\epsilon ]}(k, k) is nonzero for all i \geq 0. Hence a(\mathcal{O}_ Y) is not bounded above by Example 48.3.2.
Comments (0)