Lemma 48.31.2. Let $j : U \to X$ be an open immersion of Noetherian schemes. Let $j' : U \to X'$ be a compactification of $U$ over $X$ (see proof) and denote $f : X' \to X$ the structure morphism. Then we have a canonical isomorphism $Rj_! \to Rf_* \circ R(j')_!$ of functors $D^ b_{\textit{Coh}}(\mathcal{O}_ U) \to \text{Pro-}D^ b_{\textit{Coh}}(\mathcal{O}_ X)$ where $Rj_!$ and $Rj'_!$ are as in Remark 48.30.5.

Proof. The fact that $X'$ is a compactification of $U$ over $X$ means precisely that $f : X' \to X$ is proper, that $j'$ is an open immersion, and $j = f \circ j'$. See More on Flatness, Section 38.32. If $j'(U) = f^{-1}(j(U))$, then the lemma follows immediately from Lemma 48.31.1. If $j'(U) \not= f^{-1}(j(U))$, then denote $X'' \subset X'$ the scheme theoretic closure of $j' : U \to X'$ and denote $j'' : U \to X''$ the corresponding open immersion. Picture

$\xymatrix{ & & X'' \ar[d]^{f'} \\ & & X' \ar[d]^ f \\ U \ar[rr]^ j \ar[rru]^{j'} \ar[rruu]^{j''} & & X }$

By More on Flatness, Lemma 38.32.1 part (c) and the discussion above we have isomorphisms $Rf'_* \circ Rj''_! = Rj'_!$ and $R(f \circ f')_* \circ Rj''_! = Rj_!$. Since $R(f \circ f')_* = Rf_* \circ Rf'_*$ we conclude. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).