Lemma 51.2.2. Let $\mathbf{F}_ p \subset \Lambda \subset R \subset S$ be ring extensions and assume that $S$ is isomorphic to $R[x]/(x^ p - a)$ for some $a \in R$. Then there are canonical $R$-linear maps

$\text{Tr} : \Omega ^{t + 1}_{S/\Lambda } \longrightarrow \Omega _{R/\Lambda }^{t + 1}$

for $t \geq 0$ such that

$\eta _1 \wedge \ldots \wedge \eta _ t \wedge x^ i\text{d}x \longmapsto \left\{ \begin{matrix} 0 & \text{if} & 0 \leq i \leq p - 2, \\ \eta _1 \wedge \ldots \wedge \eta _ t \wedge \text{d}a & \text{if} & i = p - 1 \end{matrix} \right.$

for $\eta _ i \in \Omega _{R/\Lambda }$ and such that $\text{Tr}$ annihilates the image of $S \otimes _ R \Omega _{R/\Lambda }^{t + 1} \to \Omega _{S/\Lambda }^{t + 1}$.

Proof. For $t = 0$ we use the composition

$\Omega _{S/\Lambda } \to \Omega _{S/R} \to \Omega _ R \to \Omega _{R/\Lambda }$

where the second map is Lemma 51.2.1. There is an exact sequence

$H_1(L_{S/R}) \xrightarrow {\delta } \Omega _{R/\Lambda } \otimes _ R S \to \Omega _{S/\Lambda } \to \Omega _{S/R} \to 0$

(Algebra, Lemma 10.132.4). The module $\Omega _{S/R}$ is free over $S$ with basis $\text{d}x$ and the module $H^1(L_{S/R})$ is free over $S$ with basis $x^ p - a$ which $\delta$ maps to $-\text{d}a \otimes 1$ in $\Omega _{R/\Lambda } \otimes _ R S$. In particular, if we set

$M = \mathop{\mathrm{Coker}}(R \to \Omega _{R/\Lambda }, 1 \mapsto -\text{d}a)$

then we see that $\mathop{\mathrm{Coker}}(\delta ) = M \otimes _ R S$. We obtain a canonical map

$\Omega ^{t + 1}_{S/\Lambda } \to \wedge _ S^ t(\mathop{\mathrm{Coker}}(\delta )) \otimes _ S \Omega _{S/R} = \wedge ^ t_ R(M) \otimes _ R \Omega _{S/R}$

Now, since the image of the map $\text{Tr} : \Omega _{S/R} \to \Omega _{R/\lambda }$ of Lemma 51.2.1 is contained in $R\text{d}a$ we see that wedging with an element in the image annihilates $\text{d}a$. Hence there is a canonical map

$\wedge ^ t_ R(M) \otimes _ R \Omega _{S/R} \to \Omega _{R/\Lambda }^{t + 1}$

mapping $\overline{\eta }_1 \wedge \ldots \wedge \overline{\eta }_ t \wedge \omega$ to $\eta _1 \wedge \ldots \wedge \eta _ t \wedge \text{Tr}(\omega )$. $\square$

## Comments (1)

Comment #4245 by Dario Weißmann on

couple typos: $H^1(L_{S/R})$ should be $H_1(L_{S/R})$

$\Omega_{R/\lambda}$ should be $\Omega_{R/\Lambda}$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AX5. Beware of the difference between the letter 'O' and the digit '0'.