Lemma 31.12.14. Let X be an integral locally Noetherian normal scheme with generic point \eta . Let \mathcal{F}, \mathcal{G} be coherent \mathcal{O}_ X-modules. Let T : \mathcal{G}_\eta \to \mathcal{F}_\eta be a linear map. Then T extends to a map \mathcal{G} \to \mathcal{F}^{**} of \mathcal{O}_ X-modules if and only if
for every x \in X with \dim (\mathcal{O}_{X, x}) = 1 we have
T\left(\mathop{\mathrm{Im}}(\mathcal{G}_ x \to \mathcal{G}_\eta )\right) \subset \mathop{\mathrm{Im}}(\mathcal{F}_ x \to \mathcal{F}_\eta ).
Comments (0)
There are also: