The Stacks project

Lemma 43.21.1. Let $f : X \to Y$ be a flat morphism of nonsingular varieties. Set $e = \dim (X) - \dim (Y)$. Let $\mathcal{F}$ and $\mathcal{G}$ be coherent sheaves on $Y$ with $\dim (\text{Supp}(\mathcal{F})) \leq r$, $\dim (\text{Supp}(\mathcal{G})) \leq s$, and $\dim (\text{Supp}(\mathcal{F}) \cap \text{Supp}(\mathcal{G}) ) \leq r + s - \dim (Y)$. In this case the cycles $[f^*\mathcal{F}]_{r + e}$ and $[f^*\mathcal{G}]_{s + e}$ intersect properly and

\[ f^*([\mathcal{F}]_ r \cdot [\mathcal{G}]_ s) = [f^*\mathcal{F}]_{r + e} \cdot [f^*\mathcal{G}]_{s + e} \]

Proof. The statement that $[f^*\mathcal{F}]_{r + e}$ and $[f^*\mathcal{G}]_{s + e}$ intersect properly is immediate from the assumption that $f$ has relative dimension $e$. By Lemmas 43.19.4 and 43.7.1 it suffices to show that

\[ f^*\text{Tor}_ i^{\mathcal{O}_ Y}(\mathcal{F}, \mathcal{G}) = \text{Tor}_ i^{\mathcal{O}_ X}(f^*\mathcal{F}, f^*\mathcal{G}) \]

as $\mathcal{O}_ X$-modules. This follows from Cohomology, Lemma 20.27.3 and the fact that $f^*$ is exact, so $Lf^*\mathcal{F} = f^*\mathcal{F}$ and similarly for $\mathcal{G}$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0B0Y. Beware of the difference between the letter 'O' and the digit '0'.