The Stacks project

43.21 Flat pullback and intersection products

Short discussion of the interaction between intersections and flat pullback.

Lemma 43.21.1. Let $f : X \to Y$ be a flat morphism of nonsingular varieties. Set $e = \dim (X) - \dim (Y)$. Let $\mathcal{F}$ and $\mathcal{G}$ be coherent sheaves on $Y$ with $\dim (\text{Supp}(\mathcal{F})) \leq r$, $\dim (\text{Supp}(\mathcal{G})) \leq s$, and $\dim (\text{Supp}(\mathcal{F}) \cap \text{Supp}(\mathcal{G}) ) \leq r + s - \dim (Y)$. In this case the cycles $[f^*\mathcal{F}]_{r + e}$ and $[f^*\mathcal{G}]_{s + e}$ intersect properly and

\[ f^*([\mathcal{F}]_ r \cdot [\mathcal{G}]_ s) = [f^*\mathcal{F}]_{r + e} \cdot [f^*\mathcal{G}]_{s + e} \]

Proof. The statement that $[f^*\mathcal{F}]_{r + e}$ and $[f^*\mathcal{G}]_{s + e}$ intersect properly is immediate from the assumption that $f$ has relative dimension $e$. By Lemmas 43.19.4 and 43.7.1 it suffices to show that

\[ f^*\text{Tor}_ i^{\mathcal{O}_ Y}(\mathcal{F}, \mathcal{G}) = \text{Tor}_ i^{\mathcal{O}_ X}(f^*\mathcal{F}, f^*\mathcal{G}) \]

as $\mathcal{O}_ X$-modules. This follows from Cohomology, Lemma 20.27.3 and the fact that $f^*$ is exact, so $Lf^*\mathcal{F} = f^*\mathcal{F}$ and similarly for $\mathcal{G}$. $\square$

Lemma 43.21.2. Let $f : X \to Y$ be a flat morphism of nonsingular varieties. Let $\alpha $ be a $r$-cycle on $Y$ and $\beta $ an $s$-cycle on $Y$. Assume that $\alpha $ and $\beta $ intersect properly. Then $f^*\alpha $ and $f^*\beta $ intersect properly and $f^*( \alpha \cdot \beta ) = f^*\alpha \cdot f^*\beta $.

Proof. By linearity we may assume that $\alpha = [V]$ and $\beta = [W]$ for some closed subvarieties $V, W \subset Y$ of dimension $r, s$. Say $f$ has relative dimension $e$. Then the lemma is a special case of Lemma 43.21.1 because $[V] = [\mathcal{O}_ V]_ r$, $[W] = [\mathcal{O}_ W]_ r$, $f^*[V] = [f^{-1}(V)]_{r + e} = [f^*\mathcal{O}_ V]_{r + e}$, and $f^*[W] = [f^{-1}(W)]_{s + e} = [f^*\mathcal{O}_ W]_{s + e}$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0B0B. Beware of the difference between the letter 'O' and the digit '0'.