Lemma 17.26.1. Let $X$ be a ringed space. Let $0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0$ be a short exact sequence of finite locally free $\mathcal{O}_ X$-modules. Then there is a canonical isomorphism

$\det (\mathcal{E}') \otimes _{\mathcal{O}_ X}\det (\mathcal{E}'') \longrightarrow \det (\mathcal{E})$

of $\mathcal{O}_ X$-modules.

Proof. We can decompose $X$ into disjoint open and closed subsets such that both $\mathcal{E}'$ and $\mathcal{E}''$ have constant rank on them. Thus we reduce to the case where $\mathcal{E}'$ and $\mathcal{E}''$ have constant rank, say $r'$ and $r''$. In this situation we define

$\wedge ^{r'}(\mathcal{E}') \otimes _{\mathcal{O}_ X} \wedge ^{r''}(\mathcal{E}'') \longrightarrow \wedge ^{r' + r''}(\mathcal{E})$

as follows. Given local sections $s'_1, \ldots , s'_{r'}$ of $\mathcal{E}'$ and local sections $s''_1, \ldots , s''_{r''}$ of $\mathcal{E}''$ we map

$s'_1 \wedge \ldots \wedge s'_{r'} \otimes s''_1 \wedge \ldots \wedge s''_{r''} \quad \text{to}\quad s'_1 \wedge \ldots \wedge s'_{r'} \wedge \tilde s''_1 \wedge \ldots \wedge \tilde s''_{r''}$

where $\tilde s''_ i$ is a local lift of the section $s''_ i$ to a section of $\mathcal{E}$. We omit the details. $\square$

There are also:

• 4 comment(s) on Section 17.26: Rank and determinant

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).