Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 31.14.2. Let $S$ be a scheme and let $D \subset S$ be an effective Cartier divisor. Then the conormal sheaf is $\mathcal{C}_{D/S} = \mathcal{I}_ D|_ D = \mathcal{O}_ S(-D)|_ D$ and the normal sheaf is $\mathcal{N}_{D/S} = \mathcal{O}_ S(D)|_ D$.

Proof. This follows from Morphisms, Lemma 29.31.2. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 31.14: Effective Cartier divisors and invertible sheaves

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.