Lemma 33.44.15. Let $k$ be a field. Let $X$ be a proper scheme of dimension $\leq 1$ over $k$. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. Let $C_ i \subset X$, $i = 1, \ldots , t$ be the irreducible components of dimension $1$. The following are equivalent:

$\mathcal{L}$ is ample, and

$\deg (\mathcal{L}|_{C_ i}) > 0$ for $i = 1, \ldots , t$.

**Proof.**
Let $x_1, \ldots , x_ r \in X$ be the isolated closed points. Think of $x_ i = \mathop{\mathrm{Spec}}(\kappa (x_ i))$ as a scheme. Consider the morphism of schemes

\[ f : C_1 \amalg \ldots \amalg C_ t \amalg x_1 \amalg \ldots \amalg x_ r \longrightarrow X \]

This is a finite surjective morphism of schemes proper over $k$ (details omitted). Thus $\mathcal{L}$ is ample if and only if $f^*\mathcal{L}$ is ample (Cohomology of Schemes, Lemma 30.17.2). Thus we conclude by Lemma 33.44.14.
$\square$

## Comments (0)

There are also: