Lemma 42.30.5. Let (S, \delta ) be as in Situation 42.7.1. Let X be locally of finite type over S. Let (\mathcal{L}, s, i : D \to X) and (\mathcal{L}', s', i' : D' \to X) be two triples as in Definition 42.29.1. Then the diagram
\xymatrix{ \mathop{\mathrm{CH}}\nolimits _ k(X) \ar[r]_{i^*} \ar[d]_{(i')^*} & \mathop{\mathrm{CH}}\nolimits _{k - 1}(D) \ar[d]^{j^*} \\ \mathop{\mathrm{CH}}\nolimits _{k - 1}(D') \ar[r]^{(j')^*} & \mathop{\mathrm{CH}}\nolimits _{k - 2}(D \cap D') }
commutes where each of the maps is a gysin map.
Proof.
Denote j : D \cap D' \to D and j' : D \cap D' \to D' the closed immersions corresponding to (\mathcal{L}|_{D'}, s|_{D'} and (\mathcal{L}'_ D, s|_ D). We have to show that (j')^*i^*\alpha = j^* (i')^*\alpha for all \alpha \in \mathop{\mathrm{CH}}\nolimits _ k(X). Let W \subset X be an integral closed subscheme of dimension k. Let us prove the equality in case \alpha = [W]. We will deduce it from the key formula.
We let \sigma be a nonzero meromorphic section of \mathcal{L}|_ W which we require to be equal to s|_ W if W \not\subset D. We let \sigma ' be a nonzero meromorphic section of \mathcal{L}'|_ W which we require to be equal to s'|_ W if W \not\subset D'. Write
\text{div}_{\mathcal{L}|_ W}(\sigma ) = \sum \text{ord}_{Z_ i, \mathcal{L}|_ W}(\sigma )[Z_ i] = \sum n_ i[Z_ i]
and similarly
\text{div}_{\mathcal{L}'|_ W}(\sigma ') = \sum \text{ord}_{Z_ i, \mathcal{L}'|_ W}(\sigma ')[Z_ i] = \sum n'_ i[Z_ i]
as in the discussion in Section 42.27. Then we see that Z_ i \subset D if n_ i \not= 0 and Z'_ i \subset D' if n'_ i \not= 0. For each i, let \xi _ i \in Z_ i be the generic point. As in Section 42.27 we choose for each i an element \sigma _ i \in \mathcal{L}_{\xi _ i}, resp. \sigma '_ i \in \mathcal{L}'_{\xi _ i} which generates over B_ i = \mathcal{O}_{W, \xi _ i} and which is equal to the image of s, resp. s' if Z_ i \not\subset D, resp. Z_ i \not\subset D'. Write \sigma = f_ i \sigma _ i and \sigma ' = f'_ i\sigma '_ i so that n_ i = \text{ord}_{B_ i}(f_ i) and n'_ i = \text{ord}_{B_ i}(f'_ i). From our definitions it follows that
(j')^*i^*[W] = \sum \text{ord}_{B_ i}(f_ i) \text{div}_{\mathcal{L}'|_{Z_ i}}(\sigma '_ i|_{Z_ i})
as cycles and
j^*(i')^*[W] = \sum \text{ord}_{B_ i}(f'_ i) \text{div}_{\mathcal{L}|_{Z_ i}}(\sigma _ i|_{Z_ i})
The key formula (Lemma 42.27.1) now gives the equality
\sum \left( \text{ord}_{B_ i}(f_ i) \text{div}_{\mathcal{L}'|_{Z_ i}}(\sigma '_ i|_{Z_ i}) - \text{ord}_{B_ i}(f'_ i) \text{div}_{\mathcal{L}|_{Z_ i}}(\sigma _ i|_{Z_ i}) \right) = \sum \text{div}_{Z_ i}(\partial _{B_ i}(f_ i, f'_ i))
of cycles. Note that \text{div}_{Z_ i}(\partial _{B_ i}(f_ i, f'_ i)) = 0 if Z_ i \not\subset D \cap D' because in this case either f_ i = 1 or f'_ i = 1. Thus we get a rational equivalence between our specific cycles representing (j')^*i^*[W] and j^*(i')^*[W] on D \cap D' \cap W. By Remark 42.19.6 the result follows for general \alpha .
\square
Comments (2)
Comment #6644 by WhatJiaranEatsTonight on
Comment #6869 by Johan on
There are also: