Lemma 70.17.3. Let $f: X \to S$ be a quasi-compact and quasi-separated morphism from an algebraic space to a scheme $S$. If for every $x \in |X|$ with image $s = f(x) \in S$ the algebraic space $X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S,s})$ is a scheme, then $X$ is a scheme.

**Proof.**
Let $x \in |X|$. It suffices to find an open neighbourhood $U$ of $s = f(x)$ such that $X \times _ S U$ is a scheme. As $X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S, s})$ is a scheme, then, since $\mathcal{O}_{S, s} = \mathop{\mathrm{colim}}\nolimits \mathcal{O}_ S(U)$ where the colimit is over affine open neighbourhoods of $s$ in $S$ we see that

By Lemma 70.5.11 we see that $X \times _ S U$ is a scheme for some $U$. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)