Lemma 66.10.1. Let S be a scheme. Let X be an algebraic space over S. Let x \in |X| be a point. Let d \in \{ 0, 1, 2, \ldots , \infty \} . The following are equivalent
for some scheme U and étale morphism a : U \to X and point u \in U with a(u) = x we have \dim (\mathcal{O}_{U, u}) = d,
for any scheme U, any étale morphism a : U \to X, and any point u \in U with a(u) = x we have \dim (\mathcal{O}_{U, u}) = d.
If X is a scheme, this is equivalent to \dim (\mathcal{O}_{X, x}) = d.
Comments (0)