Lemma 15.3.2. Let $R$ be a ring. Let $0 \to P' \to P \to P'' \to 0$ be a short exact sequence of finite projective $R$-modules. If $2$ out of $3$ of these modules are stably free, then so is the third.
Proof. Since the modules are projective, the sequence is split. Thus we can choose an isomorphism $P = P' \oplus P''$. If $P' \oplus R^{\oplus n}$ and $P'' \oplus R^{\oplus m}$ are free, then we see that $P \oplus R^{\oplus n + m}$ is free. Suppose that $P'$ and $P$ are stably free, say $P \oplus R^{\oplus n}$ is free and $P' \oplus R^{\oplus m}$ is free. Then
is free. Thus $P''$ is stably free. By symmetry we get the last of the three cases. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: