Lemma 15.3.3. Let $R$ be a ring. Let $I \subset R$ be an ideal. Assume that every element of $1 + I$ is a unit (in other words $I$ is contained in the Jacobson radical of $R$). For every finite stably free $R/I$-module $E$ there exists a finite stably free $R$-module $M$ such that $M/IM \cong E$.

Proof. Choose a $n$ and $m$ and an isomorphism $E \oplus (R/I)^{\oplus n} \cong (R/I)^{\oplus m}$. Choose $R$-linear maps $\varphi : R^{\oplus m} \to R^{\oplus n}$ and $\psi : R^{\oplus n} \to R^{\oplus m}$ lifting the projection $(R/I)^{\oplus m} \to (R/I)^{\oplus n}$ and injection $(R/I)^{\oplus n} \to (R/I)^{\oplus m}$. Then $\varphi \circ \psi : R^{\oplus n} \to R^{\oplus n}$ reduces to the identity modulo $I$. Thus the determinant of this map is invertible by our assumption on $I$. Hence $P = \mathop{\mathrm{Ker}}(\varphi )$ is stably free and lifts $E$. $\square$

There are also:

• 2 comment(s) on Section 15.3: Stably free modules

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).