Lemma 15.3.4. Let $R$ be a ring. Let $I \subset R$ be an ideal. Assume that every element of $1 + I$ is a unit (in other words $I$ is contained in the Jacobson radical of $R$). Let $M$ be a finite flat $R$-module such that $M/IM$ is a projective $R/I$-module. Then $M$ is a finite projective $R$-module.

**Proof.**
By Algebra, Lemma 10.78.5 we see that $M_\mathfrak p$ is finite free for all prime ideals $\mathfrak p \subset R$. By Algebra, Lemma 10.78.2 it suffices to show that the function $\rho _ M : \mathfrak p \mapsto \dim _{\kappa (\mathfrak p)} M \otimes _ R \kappa (\mathfrak p)$ is locally constant on $\mathop{\mathrm{Spec}}(R)$. Because $M/IM$ is finite projective, this is true on $V(I) \subset \mathop{\mathrm{Spec}}(R)$. Since every closed point of $\mathop{\mathrm{Spec}}(R)$ is in $V(I)$ and since $\rho _ M(\mathfrak p) = \rho _ M(\mathfrak q)$ whenever $\mathfrak p \subset \mathfrak q \subset R$ are prime ideals, we conclude by an elementary argument on topological spaces which we omit.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #3653 by Brian Conrad on

Comment #3749 by Johan on

There are also: