The Stacks project

Lemma 15.3.5. Let $R$ be a ring. Let $I \subset R$ be an ideal. Assume that every element of $1 + I$ is a unit (in other words $I$ is contained in the Jacobson radical of $R$). If $P$ and $P'$ are finite projective $R$-modules, then

  1. if $\varphi : P \to P'$ is an $R$-module map inducing an isomorphism $\overline{\varphi } : P/IP \to P'/IP'$, then $\varphi $ is an isomorphism,

  2. if $P/IP \cong P'/IP'$, then $P \cong P'$.

Proof. Proof of (1). As $P'$ is projective as an $R$-module we may choose a lift $\psi : P' \to P$ of the map $P' \to P'/IP' \xrightarrow {\overline{\varphi }^{-1}} P/IP$. By Nakayama's lemma (Algebra, Lemma 10.19.1) $\psi \circ \varphi $ and $\varphi \circ \psi $ are surjective. Hence these maps are isomorphisms (Algebra, Lemma 10.15.4). Thus $\varphi $ is an isomorphism.

Proof of (2). Choose an isomorphism $P/IP \cong P'/IP'$. Since $P$ is projective we can choose a lift $\varphi : P \to P'$ of the map $P \to P/IP \to P'/IP'$. Then $\varphi $ is an isomorphism by (1). $\square$

Comments (2)

Comment #3652 by Brian Conrad on

In the statement, replace "radical" with "Jacobson radical" (this is a recurring typo all over the place, keeping in mind that someone may look at a result in isolation without reading lots of surrounding text -- admittedly this isn't truly confusing if one looks at the content of the proof, but nonetheless...)

Comment #3747 by on

OK, I replaced "radical" by "Jacobson radical" in all places where appropriate and whenever we used the notation I have added text saying this denotes the Jacobson radical. See the corresponding changes here.

There are also:

  • 2 comment(s) on Section 15.3: Stably free modules

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BC6. Beware of the difference between the letter 'O' and the digit '0'.