Lemma 37.33.4. Let $f : X \to S$ and $\mathcal{E}$ be as in Lemma 37.33.1 and in addition assume $\mathcal{E}$ is an invertible $\mathcal{O}_ X$-module. If moreover the geometric fibres of $f$ are integral, then $Z$ is closed in $S$.

**Proof.**
Since $j : Z \to S$ is of finite presentation, it suffices to show: for any morphism $g : \mathop{\mathrm{Spec}}(A) \to S$ where $A$ is a valuation ring with fraction field $K$ such that $g(\mathop{\mathrm{Spec}}(K)) \in j(Z)$ we have $g(\mathop{\mathrm{Spec}}(A)) \subset j(Z)$. See Morphisms, Lemma 29.6.5. This follows from Lemma 37.33.3 and the characterization of $j : Z \to S$ in Lemma 37.33.1.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)