Lemma 39.8.7. Let $k$ be a field. Let $G$ be an algebraic group scheme over $k$. Then $G$ is quasi-projective over $k$.

**Proof.**
By Varieties, Lemma 33.15.1 we may assume that $k$ is algebraically closed. Let $G^0 \subset G$ be the connected component of $G$ as in Proposition 39.7.11. Then every other connected component of $G$ has a $k$-rational point and hence is isomorphic to $G^0$ as a scheme. Since $G$ is quasi-compact and Noetherian, there are finitely many of these connected components. Thus we reduce to the case discussed in the next paragraph.

Let $G$ be a connected algebraic group scheme over an algebraically closed field $k$. If the characteristic of $k$ is zero, then $G$ is smooth over $k$ by Lemma 39.8.2. If the characteristic of $k$ is $p > 0$, then we let $H = G_{red}$ be the reduction of $G$. By Divisors, Proposition 31.17.9 it suffices to show that $H$ has an ample invertible sheaf. (For an algebraic scheme over $k$ having an ample invertible sheaf is equivalent to being quasi-projective over $k$, see for example the very general More on Morphisms, Lemma 37.49.1.) By Lemma 39.7.6 we see that $H$ is a group scheme over $k$. By Lemma 39.8.4 we see that $H$ is smooth over $k$. This reduces us to the situation discussed in the next paragraph.

Let $G$ be a quasi-compact irreducible smooth group scheme over an algebraically closed field $k$. Observe that the local rings of $G$ are regular and hence UFDs (Varieties, Lemma 33.25.3 and More on Algebra, Lemma 15.121.2). The complement of a nonempty affine open of $G$ is the support of an effective Cartier divisor $D$. This follows from Divisors, Lemma 31.16.6. (Observe that $G$ is separated by Lemma 39.7.3.) We conclude there exists an effective Cartier divisor $D \subset G$ such that $G \setminus D$ is affine. We will use below that for any $n \geq 1$ and $g_1, \ldots , g_ n \in G(k)$ the complement $G \setminus \bigcup D g_ i$ is affine. Namely, it is the intersection of the affine opens $G \setminus Dg_ i \cong G \setminus D$ in the separated scheme $G$.

We may choose the top row of the diagram

such that $U \not= \emptyset $, $j : U \to G$ is an open immersion, and $\pi $ is étale, see Morphisms, Lemma 29.36.20. There is a nonempty affine open $V \subset \mathbf{A}^ d_ k$ such that with $W = \pi ^{-1}(V)$ the morphism $\pi ' = \pi |_ W : W \to V$ is finite étale. In particular $\pi '$ is finite locally free, say of degree $n$. Consider the effective Cartier divisor

(This is the restriction to $G \times W$ of the pullback of $D \subset G$ under the flat morphism $m : G \times G \to G$.) Consider the closed subset^{1} $T = (1 \times \pi ')(\mathcal{D}) \subset G \times V$. Since $\pi '$ is finite locally free, every irreducible component of $T$ has codimension $1$ in $G \times V$. Since $G \times V$ is smooth over $k$ we conclude these components are effective Cartier divisors (Divisors, Lemma 31.15.7 and lemmas cited above) and hence $T$ is the support of an effective Cartier divisor $E$ in $G \times V$. If $v \in V(k)$, then $(\pi ')^{-1}(v) = \{ w_1, \ldots , w_ n\} \subset W(k)$ and we see that

in $G$ set theoretically. In particular we see that $G \setminus E_ v$ is affine open (see above). Moreover, if $g \in G(k)$, then there exists a $v \in V$ such that $g \not\in E_ v$. Namely, the set $W'$ of $w \in W$ such that $g \not\in Dj(w)^{-1}$ is nonempty open and it suffices to pick $v$ such that the fibre of $W' \to V$ over $v$ has $n$ elements.

Consider the invertible sheaf $\mathcal{M} = \mathcal{O}_{G \times V}(E)$ on $G \times V$. By Varieties, Lemma 33.30.5 the isomorphism class $\mathcal{L}$ of the restriction $\mathcal{M}_ v = \mathcal{O}_ G(E_ v)$ is independent of $v \in V(k)$. On the other hand, for every $g \in G(k)$ we can find a $v$ such that $g \not\in E_ v$ and such that $G \setminus E_ v$ is affine. Thus the canonical section (Divisors, Definition 31.14.1) of $\mathcal{O}_ G(E_ v)$ corresponds to a section $s_ v$ of $\mathcal{L}$ which does not vanish at $g$ and such that $G_{s_ v}$ is affine. This means that $\mathcal{L}$ is ample by definition (Properties, Definition 28.26.1). $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)