The Stacks project

Lemma 31.15.7. Let $X$ be a locally Noetherian scheme. Let $D \subset X$ be an integral closed subscheme. Assume that

  1. $D$ has codimension $1$ in $X$, and

  2. $\mathcal{O}_{X, x}$ is a UFD for all $x \in D$.

Then $D$ is an effective Cartier divisor.

Proof. Let $x \in D$ and set $A = \mathcal{O}_{X, x}$. Let $\mathfrak p \subset A$ correspond to the generic point of $D$. Then $A_\mathfrak p$ has dimension $1$ by assumption (1). Thus $\mathfrak p$ is a prime ideal of height $1$. Since $A$ is a UFD this implies that $\mathfrak p = (f)$ for some $f \in A$. Of course $f$ is a nonzerodivisor and we conclude by Lemma 31.15.2. $\square$


Comments (2)

Comment #8518 by Zhenhua Wu on

The argument seems to hold in the case of locally Noetherian scheme.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AGA. Beware of the difference between the letter 'O' and the digit '0'.