The Stacks project

Lemma 31.15.8. Let $X$ be a Noetherian scheme. Let $Z \subset X$ be a closed subscheme. Assume there exist

  1. a collection of integral effective Cartier divisors $D_ i \subset X$, $i \in I$

  2. a closed subset $Z' \subset X$ all of whose irreducible components have codimension $\geq 2$ in $X$ (Topology, Definition 5.11.1)

such that $Z \subset Z' \cup \bigcup _{i \in I} D_ i$ set-theoretically. Then there exist integers $a_ i \geq 0$ with $a_ i = 0$ for almost all $i \in I$ such that the effective Cartier divisor

\[ D = \sum a_ i D_ i \]

is contained in $Z$ and such that the inclusion morphism $D \to Z$ is an isomorphism away from codimension $2$ in $X$ (in the sense that there exists an open $U \subset Z$ such that $D \cap U \to Z \cap U$ is an isomorphism and such that every irreducible component of $Z \setminus U$ has codimension $\geq 2$ in $X$). When $Z$ is nowhere dense in $X$ existence of the $D_ i$, $i \in I$ and $Z'$ is guaranteed if $\mathcal{O}_{X, x}$ is a UFD for all $x \in Z$ or if $X$ is regular.

Proof. Let $\xi _ i \in D_ i$ be the generic point and let $\mathcal{O}_ i = \mathcal{O}_{X, \xi _ i}$ be the local ring which is a discrete valuation ring by Lemma 31.15.4. Let $a_ i \geq 0$ be the minimal valuation of an element of $\mathcal{I}_{Z, \xi _ i} \subset \mathcal{O}_ i$. Of course $a_ i > 0$ only if $D_ i$ is an irreducible component of $Z$ and hence $a_ i > 0$ only for a finite number of $i \in I$. We claim that the effective Cartier divisor $D = \sum a_ i D_ i$ works.

Namely, suppose that $x \in X$. Let $A = \mathcal{O}_{X, x}$. Let $D_1, \ldots , D_ n$ be the pairwise distinct divisors $D_ i$ such that $x \in D_ i$ and $a_ i > 0$. For $1 \leq i \leq n$ let $f_ i \in A$ be a local equation for $D_ i$. Then $f_ i$ is a prime element of $A$ and $\mathcal{O}_ i = A_{(f_ i)}$. Let $I = \mathcal{I}_{Z, x} \subset A$ be the stalk of the ideal sheaf of $Z$. By our choice of $a_ i$ we have $I A_{(f_ i)} = f_ i^{a_ i}A_{(f_ i)}$. We claim that $I \subset (\prod _{i = 1, \ldots , n} f_ i^{a_ i})$.

Proof of the claim. The localization map $\varphi : A/(f_ i) \to A_{(f_ i)}/f_ iA_{(f_ i)}$ is injective as the prime ideal $(f_ i)$ is the inverse image of the maximal ideal $f_ iA_{(f_ i)}$. By induction on $n$ we deduce that $\varphi _ n : A/(f_ i^ n)\to A_{(f_ i)}/f_ i^ nA_{(f_ i)}$ is also injective. Since $\varphi _{a_ i}(I) = 0$, we have $I \subset (f_ i^{a_ i})$. Thus, for any $x \in I$, we may write $x = f_1^{a_1}x_1$ for some $x_1 \in A$. Since $D_1, \ldots , D_ n$ are pairwise distinct, $f_ i$ is a unit in $A_{(f_ j)}$ for $i \not= j$. Comparing $x$ and $x_1$ at $A_{(f_ i)}$ for $n \geq i > 1$, we still have $x_1 \in (f_ i^{a_ i})$. Repeating the previous process, we inductively write $x_ i = f_{i + 1}^{a_{i + 1}}x_{i + 1}$ for any $n > i \geq 1$. In conclusion, $x \in (\prod _{i = 1, \ldots n} f_ i^{a_ i})$ for any $x \in I$ as desired.

The claim shows that $\mathcal{I}_ Z \subset \mathcal{I}_ D$, i.e., that $D \subset Z$. Moreover, we also see that $D$ and $Z$ agree at the $\xi _ i$, which proves that $D \to Z$ is an isomorphism away from codimension $2$ on $X$.

To see the final statements we argue as follows. A regular local ring is a UFD (More on Algebra, Lemma 15.122.2) hence it suffices to argue in the UFD case. In that case, let $D_ i$ be the irreducible components of $Z$ which have codimension $1$ in $X$. By Lemma 31.15.7 each $D_ i$ is an effective Cartier divisor. $\square$


Comments (6)

Comment #7190 by on

It seems too fast for me to deduce from . I understand it as follows:

The localization map is injective as the prime ideal is the inverse image of the maximal ideal . By dévissage, we deduce that is also injective. Since , we have . Thus, for any , we write for some . We may assume that the concerning effective Cartier divisor are pairwise different, so that is a unit in for . Comparing and at for , we still have for . Repeating the previous process, we inductively write for any . In conclusion, for any .

I will appretiate if anyone can share his or her faster ideas.

Comment #7191 by on

Very good. I will add this when I next go through all the comments. Thanks!

Comment #9555 by Branislav Sobot on

Are you assuming in the statement that there are finitely many divisors ? If so, I suggest you add it. If not, then I don't understand what would the sum of these divisors be since we only defined finite sums of (effective Cartier) divisors. It also doesn't hurt to add to the statement that are nonnegative integers.

Comment #9556 by Branislav Sobot on

Also, for the proof of the final statement, what happens with the irreducible components of which have codimension zero in ? For instance, what if is irreducible and , how do you find ?

Comment #10297 by on

Okay, I am now explicitly allowing an infinite number of , I have spelled out thr codimension condition more precisely and I have added the requirement that is nowhere dense in the last statement of the lemma. See this commit.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AGB. Beware of the difference between the letter 'O' and the digit '0'.