Lemma 33.25.3. Let $X \to \mathop{\mathrm{Spec}}(k)$ be a smooth morphism where $k$ is a field. Then $X$ is a regular scheme.
Smooth over a field implies regular
Proof.
(See also Lemma 33.12.6.) By Algebra, Lemma 10.140.3 every local ring $\mathcal{O}_{X, x}$ is regular. And because $X$ is locally of finite type over $k$ it is locally Noetherian. Hence $X$ is regular by Properties, Lemma 28.9.2.
$\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (1)
Comment #1049 by Lenny Taelman on